1 \documentclass[11pt,
a4paper]{article
}
3 \usepackage{fullpage, amssymb, amsthm, enumerate, amsmath, pictexwd, mathrsfs, ../dcpic
}
7 \newcommand{\mbc}[1]{\textbf{\ensuremath{\mathcal{#1}}}}
8 \newcommand{\pend}{\hspace*
{\fill}{\ensuremath{\square}}}
9 \newcommand{\es}{\ensuremath{\varnothing}}
10 \newcommand{\ltr}{\ensuremath{(
\Rightarrow)
}}
11 \newcommand{\rtl}{\ensuremath{(
\Leftarrow)
}}
12 \newcommand{\mf}[1]{\ensuremath{\mathfrak{#1}}}
18 \setlength{\arraycolsep}{2pt
}
19 \setlength{\parskip}{1ex
}
20 \setlength{\parindent}{0pt
}
25 {\bf Victoria University of Wellington
}\\
[1ex
]
26 {\bf School of Mathematics, Statistics \& Operations Research
}\\
32 Michael Welsh (
301012788)
33 \vspace{1ex
}\hrule\vspace{1ex
}
36 \item WOLOG, $G$ is connected. Assume that $G$ doesn't contain a cycle. Then $G$ is a tree. Every tree has at least two leaves (a leaf is a vertex with degree one). But every vertex in $G$ has degree at least two. Therefore $G$ cannot be a tree, and so therefore $G$ contains a cycle.
\pend
37 \item There are
15 matroids with at most three elements (up to isomorphism):
38 \
[\begin{tabular
}{c|ccc
}
39 $M_x$ & $E$ &
\mbc{I
} & $r(M_x)$ \\
\hline
40 $M_
\alpha$ &
\es &
\es &
0 \\
41 $M_
\beta$ & $\
{a\
}$ &
\es &
0 \\
42 $M_
\gamma$ & $\
{a\
}$ & $\
{\es, a\
}$ &
1 \\
43 $M_
\delta$ & $\
{a, b\
}$ &
\es &
0 \\
44 $M_
\varepsilon$ & $\
{a, b\
}$ & $\
{\es, a\
}$ &
1 \\
45 $M_
\zeta$ & $\
{a, b\
}$ & $\
{\es, a, b\
}$ &
1 \\
46 $M_
\eta$ & $\
{a, b\
}$ & $\
{\es, a, b, \
{a, b\
}\
}$ &
2 \\
47 $M_
\vartheta$ & $\
{a, b, c\
}$ &
\es &
0 \\
48 $M_
\iota$ & $\
{a, b, c\
}$ & $\
{\es, a\
}$ &
1 \\
49 $M_
\kappa$ & $\
{a, b, c\
}$ & $\
{\es, a, b\
}$ &
1 \\
50 $M_
\lambda$ & $\
{a, b, c\
}$ & $\
{\es, a, b, c\
}$ &
1 \\
51 $M_
\mu$ & $\
{a, b, c\
}$ & $\
{\es, a, b, \
{a, b\
}\
}$ &
2 \\
52 $M_
\nu$ & $\
{a, b, c\
}$ & $\
{\es, a, b, c, \
{a, b\
}, \
{a, c\
}\
}$ &
2 \\
53 $M_
\xi$ & $\
{a, b, c\
}$ & $\
{\es, a, b, c, \
{a, b\
}, \
{a, c\
}, \
{b, c\
}\
}$ &
2 \\
54 $M_
\varpi$ & $\
{a, b, c\
}$ & $\
{\es, a, b, c, \
{a, b\
}, \
{a, c\
}, \
{b, c\
}, \
{a, b, c\
}\
}$ &
3
56 \
[\begin{tabular
}{c|cc
}
57 $M_x$ & Geometric Representation & Associated Graph \\
\hline
58 $M_
\alpha$ &
\begindc{\undigraph}[13]
63 \enddc & $
\bullet$ \\ \\
64 $M_
\beta$ &
\begindc{\undigraph}[13]
70 \enddc &
\begindc{\undigraph}[10]
72 \cmor((
0,
0)(
2,
1)(
3,
0)(
2,-
1)(
0,
0))
\pup(
3,
1)
{$a$
}[2]
74 $M_
\gamma$ &
\begindc{\undigraph}[13]
80 \enddc &
\begindc{\undigraph}[20]
85 $M_
\delta$ &
\begindc{\undigraph}[13]
92 \enddc &
\begindc{\undigraph}[10]
94 \cmor((
0,
0)(
2,
1)(
3,
0)(
2,-
1)(
0,
0))
\pup(
3,
1)
{$b$
}[2]
95 \cmor((
0,
0)(-
2,
1)(-
3,
0)(-
2,-
1)(
0,
0))
\pup(-
3,-
1)
{$a$
}[2]
97 $M_
\varepsilon$ &
\begindc{\undigraph}[13]
104 \enddc &
\begindc{\undigraph}[10]
108 \cmor((
0,
0)(
2,
1)(
3,
0)(
2,-
1)(
0,
0))
\pdown(
3,
1)
{$b$
}[2]
110 $M_
\zeta$ &
\begindc{\undigraph}[13]
116 \enddc &
\begindc{\undigraph}[10]
119 \cmor((
0,
0)(
3,
1)(
6,
0))
\pup(
1,
1)
{$a$
}[2]
120 \cmor((
0,
0)(
3,-
1)(
6,
0))
\pdown(
5,-
1)
{$b$
}[2]
122 $M_
\eta$ &
\begindc{\undigraph}[13]
129 \enddc &
\begindc{\undigraph}[25]
137 \
[\begin{tabular
}{c|cc
}
138 $M_x$ & Geometric Representation & Associated Graph \\
\hline
139 $M_
\vartheta$ &
\begindc{\undigraph}[13]
147 \enddc &
\begindc{\undigraph}[10]
149 \cmor((
0,
0)(
2,
1)(
3,
0)(
2,-
1)(
0,
0))
\pdown(
3,
1)
{$b$
}[2]
150 \cmor((
0,
0)(-
2,
1)(-
3,
0)(-
2,-
1)(
0,
0))
\pdown(-
3,
1)
{$a$
}[2]
151 \cmor((
0,
0)(-
1,-
2)(
0,-
3)(
1,-
2)(
0,
0))
\pdown(-
1,-
3)
{$c$
}[2]
153 $M_
\iota$ &
\begindc{\undigraph}[13]
161 \enddc &
\begindc{\undigraph}[10]
165 \cmor((
0,
0)(-
2,
1)(-
3,
0)(-
2,-
1)(
0,
0))
\pdown(-
3,
1)
{$b$
}[2]
166 \cmor((
4,
0)(
6,
1)(
7,
0)(
6,-
1)(
4,
0))
\pdown(
7,
1)
{$c$
}[2]
168 $M_
\kappa$ &
\begindc{\undigraph}[13]
175 \enddc &
\begindc{\undigraph}[10]
178 \cmor((
0,
0)(
3,
1)(
6,
0))
\pup(
1,
1)
{$a$
}[2]
179 \cmor((
0,
0)(
3,-
1)(
6,
0))
\pup(
5,-
1)
{$b$
}[2]
180 \cmor((
6,
0)(
8,
1)(
9,
0)(
8,-
1)(
6,
0))
\pup(
9,
1)
{$c$
}[2]
182 $M_
\lambda$ &
\begindc{\undigraph}[13]
188 \enddc &
\begindc{\undigraph}[10]
192 \cmor((
0,
0)(
3,
2)(
6,
0))
\pup(
1,
2)
{$a$
}[2]
193 \cmor((
0,
0)(
3,-
2)(
6,
0))
\pup(
5,-
2)
{$c$
}[2]
195 $M_
\mu$ &
\begindc{\undigraph}[13]
203 \enddc &
\begindc{\undigraph}[10]
209 \cmor((
0,
0)(-
2,
1)(-
3,
0)(-
2,-
1)(
0,
0))
\pdown(-
3,
1)
{$c$
}[2]
211 $M_
\nu$ &
\begindc{\undigraph}[13]
218 \enddc &
\begindc{\undigraph}[9]
223 \cmor((
6,
0)(
9,
1)(
12,
0))
\pdown(
7,
1)
{$b$
}[2]
224 \cmor((
6,
0)(
9,-
1)(
12,
0))
\pdown(
11,-
1)
{$c$
}[2]
226 $M_
\xi$ &
\begindc{\undigraph}[13]
235 \enddc &
\begindc{\undigraph}[10]
236 \obj(-
2,-
1)
[a
]{} % bottom left
237 \obj(
2,-
1)
[b
]{} % bottom right
240 \mor{b
}{c
}{$b$
}[-
1,
2]
241 \mor{a
}{b
}{$c$
}[-
1,
2]
243 $M_
\varpi$ &
\begindc{\undigraph}[13]
251 \enddc &
\begindc{\undigraph}[12]
252 \obj(-
2,-
1)
[a
]{} % bottom left
253 \obj(
2,-
1)
[b
]{} % bottom right
255 \obj(
0,
0)
[d
]{} % middle
261 \item \begin{enumerate
}[(i)
]
262 \item \
[\begin{vmatrix
} 1 &
1 &
1 \\
1 &
0 &
1 \\
1 &
1 &
0 \end{vmatrix
} =
1\
]
263 So a basis for the matroid is
264 \
[\begin{Bmatrix
} \begin{bmatrix
} 0 \\
0 \\
0 \\
1 \end{bmatrix
}, &
\begin{bmatrix
} 1 \\
1 \\
1 \\
1 \end{bmatrix
}, &
\begin{bmatrix
} 1 \\
0 \\
1 \\
1 \end{bmatrix
}, &
\begin{bmatrix
} 1 \\
1 \\
0 \\
1 \end{bmatrix
} \end{Bmatrix
}\
]
265 \item A spanning circuit for the matroid is
266 \
[\begin{Bmatrix
} \begin{bmatrix
} 1 \\
0 \\
0 \\
0 \end{bmatrix
}, &
\begin{bmatrix
} 1 \\
0 \\
1 \\
1 \end{bmatrix
}, &
\begin{bmatrix
} 1 \\
1 \\
0 \\
1 \end{bmatrix
}, &
\begin{bmatrix
} 1 \\
1 \\
1 \\
0 \end{bmatrix
} \end{Bmatrix
}\
]
267 \item A triangle of the matroid is
268 \
[\begin{Bmatrix
} \begin{bmatrix
} 0 \\
0 \\
0 \\
1 \end{bmatrix
}, &
\begin{bmatrix
} 1 \\
1 \\
1 \\
1 \end{bmatrix
}, &
\begin{bmatrix
} 1 \\
1 \\
1 \\
0 \end{bmatrix
} \end{Bmatrix
}\
]
269 \item A five element hyperplane for the matroid is
270 \
[\begin{Bmatrix
} \begin{bmatrix
} 0 \\
0 \\
1 \\
0 \end{bmatrix
}, &
\begin{bmatrix
} 0 \\
0 \\
0 \\
1 \end{bmatrix
}, &
\begin{bmatrix
} 1 \\
1 \\
1 \\
1 \end{bmatrix
}, &
\begin{bmatrix
} 1 \\
1 \\
0 \\
1 \end{bmatrix
}, &
\begin{bmatrix
} 1 \\
1 \\
1 \\
0 \end{bmatrix
} \end{Bmatrix
}\
]
271 So a triad of the matroid is the complement of that set, which is
272 \
[\begin{Bmatrix
} \begin{bmatrix
} 1 \\
0 \\
0 \\
0 \end{bmatrix
}, &
\begin{bmatrix
} 0 \\
1 \\
0 \\
0 \end{bmatrix
}, &
\begin{bmatrix
} 1 \\
0 \\
1 \\
1 \end{bmatrix
} \end{Bmatrix
}\
]
273 \item An independent hyperplane of the matroid is
274 \
[\begin{Bmatrix
} \begin{bmatrix
} 1 \\
0 \\
0 \\
0 \end{bmatrix
}, &
\begin{bmatrix
} 0 \\
1 \\
0 \\
0 \end{bmatrix
}, &
\begin{bmatrix
} 1 \\
1 \\
1 \\
1 \end{bmatrix
}, &
\begin{bmatrix
} 1 \\
0 \\
1 \\
1 \end{bmatrix
} \end{Bmatrix
}\
]
276 \item \
[\begindc{\undigraph}[4]
277 \obj(
10,
10)
[b
]{$b$
} % bottom left
278 \obj(
37,
14)
[g
]{$g$
} % middle
279 \obj(
50,
10)
[c
]{$c$
} % bottom right
280 \obj(
30,
40)
[a
]{$a$
} % top
281 \obj(
30,
10)
[f
]{$f$
} % bottom centre
282 \obj(
20,
25)
[d
]{$d$
} % right middle
283 \obj(
40,
25)
[e
]{$e$
} % left middle
287 \cmor((
20,
25)(
23,
14)(
30,
10)(
37,
14)(
40,
25))
\pup(
11,
13)
{}[2]
289 \item Up to isomorphism, the simple rank three matroids with six elements are:
290 \
[\begindc{\undigraph}[12] %\varrho
301 \
[\begindc{\undigraph}[2] %\sigma
302 \obj(
10,
10)
[b
]{$b$
} % bottom left
303 \obj(
50,
10)
[c
]{$c$
} % bottom right
304 \obj(
30,
40)
[a
]{$a$
} % top
305 \obj(
30,
10)
[f
]{$e$
} % bottom centre
306 \obj(
20,
25)
[d
]{$f$
} % right middle
307 \obj(
40,
25)
[e
]{$d$
} % left middle
313 \
[\begindc{\undigraph}[2] %\tau
314 \obj(
10,
10)
[b
]{$b$
} % bottom left
315 \obj(
50,
10)
[c
]{$c$
} % bottom right
316 \obj(
30,
40)
[a
]{$a$
} % top
317 \obj(
30,
10)
[f
]{$e$
} % bottom centre
318 \obj(
20,
25)
[d
]{$f$
} % right middle
319 \obj(
40,
25)
[e
]{$d$
} % left middle
324 \
[\begindc{\undigraph}[2] %\upsilon
325 \obj(
10,
10)
[b
]{$b$
} % bottom left
326 \obj(
50,
10)
[c
]{$c$
} % bottom right
327 \obj(
30,
40)
[a
]{$a$
} % top
328 \obj(
30,
20)
[e
]{$e$
} % bottom centre
329 \obj(
20,
25)
[f
]{$f$
} % right middle
330 \obj(
40,
25)
[d
]{$d$
} % left middle
337 \
[\begindc{\undigraph}[12] %\psi
347 \
[\begindc{\undigraph}[12] %\omega
357 \
[\begindc{\undigraph}[12] %\phi
367 \
[\begindc{\undigraph}[12] %\chi
375 \item To start with, I'm going to assume that
{\bf I2
} is supposed to read:
376 If $I_1
\in \mbc{I
}$, and $I_2
\subseteq I_1$, then $I_2
\in \mbc{I
}$. \\
377 The first two axioms are identical to the independence axioms, so all that remains to show that the extension axiom (
{\bf I3a
}) holds. \\
378 Suppose that $I_1$ and $I_2$ are members of
\mbc{I
} such that $|I_1| < |I_2|$, but
{\bf I3a
} fails for this pair. So, $
\forall e
\in I_2 - I_1$, $I_1
\cup e
\notin \mbc{I
}$. Let $I_1
\cup I_2 = X
\subseteq E$. This means that $I_1$ is a maximal member of
\mbc{I
} contained in $X$. Now extend $I_2$ to $I'_2$, which is maximal in $X$. So $|I_2'| > |I_2| > |I_1|$, contradicting
{\bf I3
}. \\
379 Hence
{\bf I3a
} must hold, and so $(E,
\mbc{I
})$ is a matroid.
\pend
380 \item \begin{enumerate
}
381 \item[\ltr] Assume that $V$ is linearly independent. Construct the matrix corresponding to $V$. Then $|V| = |V^T|
\neq 0$. Apply the row operation $r_k
\to r_k +
\alpha r_j$ to $V^T$, forming the matrix $(V')^T$. As the only row operation used is adding a multiple of a row to another row, $|V^T| = |(V')^T| = |V'|
\neq 0$, and hence $V'$ is linearly independent.
382 \item[\rtl] Assume that $V'$ is linearly independent. Construct the matrix corresponding to $V'$. Then $|V'| = |(V')^T|
\neq 0$. Apply the row operation $r_k
\to r_k -
\alpha r_j$ to $(V')^T$, forming the matrix $V^T$. As the only row operation used is adding a multiple of a row to another row, $|(V')^T| = |V^T| = |V|
\neq 0$, and hence $V$ is linearly independent.
\pend
384 \item Suppose that $U_
{2,
4}$ is graphic. Then there exists a connected graph $G$ such that $M(G) = U_
{2,
4}$. Let $n$ be the number of vertices in $G$. Therefore a spanning tree of $G$ contains $n -
1$ edges, and so the rank of $M(G)$ is $n -
1$. \\
385 But $U_
{2,
4}$ has
4 elements, so $n =
4$. By the above reasoning, $r(U_
{2,
4}) =
4 -
1 =
3$. But $r(U_
{2,
4}) =
2$, which is a contradiction. Therefore $U_
{2,
4}$ is not graphic.
\pend
386 \item \begin{enumerate
}[(i)
]
387 \item Let $E = \
{ \alpha,
\beta,
\gamma \
}$. Then let $
\mbc{I
}_1 = \
{ \es, \
{\gamma\
} \
}$ and $
\mbc{I
}_2 = \
{ \es, \
{\alpha\
}, \
{\beta\
}, \
{\alpha,
\beta\
}\
}$. So $
\mbc{I
}_1
\cup \mbc{I
}_2 = \
{ \es, \
{\alpha\
}, \
{\beta\
}, \
{\gamma\
}, \
{\alpha,
\beta\
}\
}$. Then $(E,
\mbc{I
}_1
\cup \mbc{I
}_2)$ is not a matroid, as setting $I_1 = \
{\alpha,
\beta\
}$ and $I_2 = \
{\gamma\
}$ breaks
{\bf I3
}.
388 \item Let $
\mf{J
} = \
{I_1
\cup I_2 | I_1
\in \mbc{I
}_1,\ I_2
\in \mbc{I
}_2\
}$.
\begin{enumerate
}
389 \item[{\bf I1
}:
] $
\es \in \mbc{I
}_1$, $
\es \in \mbc{I
}_2$. So $
\es \cup \es =
\es \in \mf{J
}$.
390 \item[{\bf I2
}:
] Let $J_1
\in \mf{J
}$, and $J_2
\subset J_1$. Then $J_1 = I_1
\cup I_2$, so $J_2
\subset I_1
\cup I_2$. If $J_2
\subseteq I_1$, then $J_2 = I_
{1'
} \cup \es$, where $I_
{1'
} \subseteq I_1$, so $I_
{1'
} \in \mbc{I
}_1$. Therefore $J_2
\in \mf{J
}$. Likewise if $J_2
\subseteq I_2$. \\
391 The other case is when $J_2 = I_
{1'
} \cup I_
{2'
}$, where $I_
{1'
} \subseteq I_1$ and $I_
{2'
} \subseteq I_2$, so $I_
{1'
} \in \mbc{I
}_1$ and $I_
{2'
} \in \mbc{I
}_2$. Hence $J_2
\in \mf{J
}$.
392 \item[{\bf I3
}:
] Let $J_1$ and $J_2$ be elements of
\mf{J
} such that $|J_2| < |J_1|$. Let $J_1 = I_1
\cup I_2$ and let $J_2 = I'_1
\cup I'_2$. As $|J_2| < |J_1|$, either $|I'_1| < |I_1|$ or $|I'_2| < |I_2|$. \\
393 WOLOG, $|I'_1| < |I_1|$. Then there exists $e
\in I_1 - I'_1$ such that $I'_1
\cup e
\in \mbc{I
}_1$. So $(I_1'
\cup e)
\cup I'_2 = (I'_1
\cup I'_2)
\cup e
\in \mf{J
}$.
395 As these three conditions hold, $(E,
\mf{J
})$ is a matroid.
\pend
396 \item Let $E = \
{ \alpha,
\beta,
\gamma \
}$. Then let $
\mbc{I
}_1 = \
{ \es, \
{\alpha\
}, \
{\beta\
}, \
{\gamma\
}, \
{\alpha,
\beta\
}, \
{\beta,
\gamma\
} \
}$ and $
\mbc{I
}_2 = \
{ \es, \
{\alpha\
}, \
{\beta\
}, \
{\gamma\
}, \
{\alpha,
\beta\
}, \
{\alpha,
\gamma\
}\
}$. So $
\mbc{I
}_1
\cap \mbc{I
}_2 = \
{ \es, \
{\alpha\
}, \
{\beta\
}, \
{\gamma\
}, \
{\alpha,
\beta\
}\
}$. Then $(E,
\mbc{I
}_1
\cap \mbc{I
}_2)$ is not a matroid, as setting $I_1 = \
{\alpha,
\beta\
}$ and $I_2 = \
{\gamma\
}$ breaks
{\bf I3
}.
398 \item Let $
\mf{B
} =
\mbc{B
} \cup \
{X\
}$.
\begin{enumerate
}
399 \item[{\bf B1
}:
] \mf{B
} is obviously non-empty, as both
\mbc{B
} and $\
{X\
}$ have something in them.
400 \item[{\bf B2
}:
] Let $B_1$ and $B_2$ be two distinct elements of
\mf{B
}, and let $x
\in B_1 - B_2$. Let $y
\in B_2 - B_1$ and consider $(B_1 - x)
\cup y$. There are
4 cases, depending on where $B_1$ and $B_2$ come from.
\begin{enumerate
}[(
1)
]
401 \item $B_1
\subseteq \mbc{B
}$, $B_2
\subseteq \mbc{B
}$. \\
402 As
\mbc{B
} is the set of bases of $M$, $B_1$ and $B_2$ are bases of $M$, and so $(B_1 - x)
\cup y
\subseteq \mf{B
}$.
403 \item $B_1
\subseteq \
{X\
} -
\mbc{B
}$, $B_2
\subseteq \mbc{B
}$. \\
404 As $B_1$ is a subset of $X$, and $X$ is a hyperplane, $B_1 - x$ is independent. $B_2$ is a basis of $M$, and is therefore independent. $|B_2| > |B_1 - x|$, so there exists $y
\in B_2 - (B_1 - x)$ such that $(B_1 - x)
\cup y$ is independent. Furthermore, $|(B_1 - x)
\cup y| = |B_2|$, and so $(B_1 - x)
\cup y$ is also a basis, and hence $(B_1 - x)
\cup y
\in \mf{B
}$.
405 \item $B_1
\subseteq \mbc{B
}$, $B_2
\subseteq \
{X\
} -
\mbc{B
}$. \\
406 This is the same as Case
2. Just swap $B_1$ and $B_2$, and $x$ and $y$ as required.
407 \item $B_1
\subseteq \
{X\
}-
\mbc{B
}$, $B_2
\subseteq \
{X\
}-
\mbc{B
}$. \\
408 $B_1$ is a subset of $\
{X\
}$, and so is $B_2$. Then $B_1 - B_2
\subseteq \
{X\
}$ and $B_2 - B_1
\subseteq \
{X\
}$. Pick $x
\in B_1 - B_2
\subseteq \
{X\
}$, so $x
\in \
{X\
}$ and hence $B_1 - x
\subseteq \
{X\
}$. Now pick $y
\in B_2 - B_1
\subseteq \
{X\
}$. Therefore $y
\in \
{X\
}$ and hence $(B_1 - x)
\cup y
\subseteq \
{X\
} \subseteq \mf{B
}$.
410 As these two conditions hold,
\mf{B
} is the set of bases of a matroid on the ground set $E$.
\pend
412 \item Let $C_1$ and $C_2$ be a pair of distinct circuits and let $e
\in C_1
\cap C_2$. By Lemma
2.3, there is a circuit, $C_3$, contained in $(C_1
\cup C_2) - e$. If this circuit contains an element of $C_1 - C_2$ (or an element of $C_2 - C_1$), then we win. \\
413 So, $C_3
\cap (C_1 - C_2) =
\es = C_3
\cap (C_2 - C_1)$. Therefore $C_3
\subseteq C_1
\cap C_2$. So $C_3
\subseteq C_1$ and $C_3
\subseteq C_2$. By Proposition
2.2, $C_3 = C_1$ and $C_3 = C_2$. However, $C_1$ and $C_2$ are distinct, so this cannot happen. Hence $C_3$ contains an element $f$, that is (WOLOG), in $C_1 - C_2$.
\pend